Best Practices in the Time of COVID-19 and Beyond

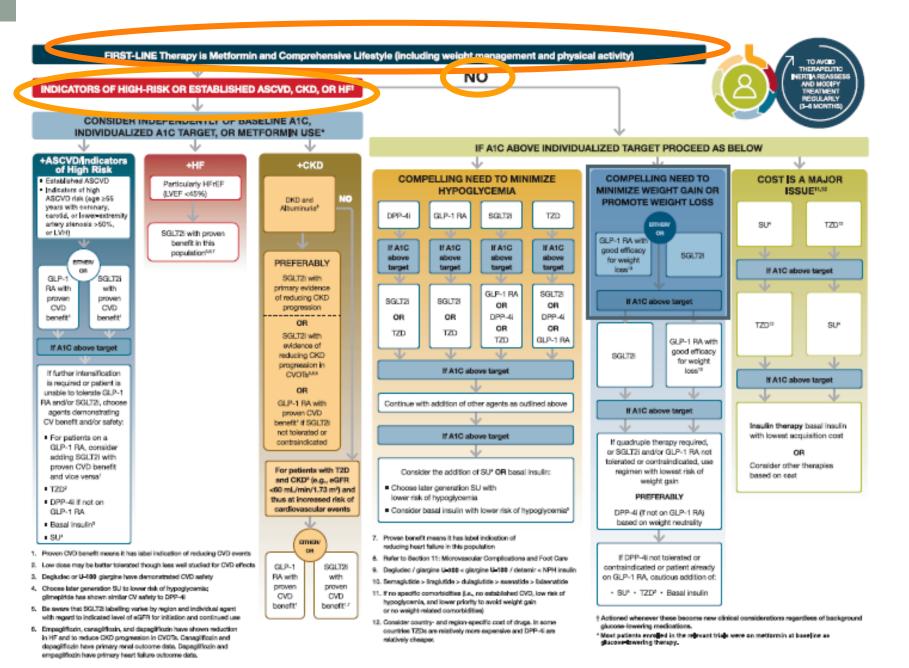
Anne Peters, MD Director, USC Clinical Diabetes Programs Professor of Medicine (Clinical Scholar) USC Keck School of Medicine

Disclosure of Potential Conflicts of Interest

<u>Advisory Boards</u>

- Abbott Diabetes Care
- Lilly
- Medscape
- NovoNordisk
- Zealand

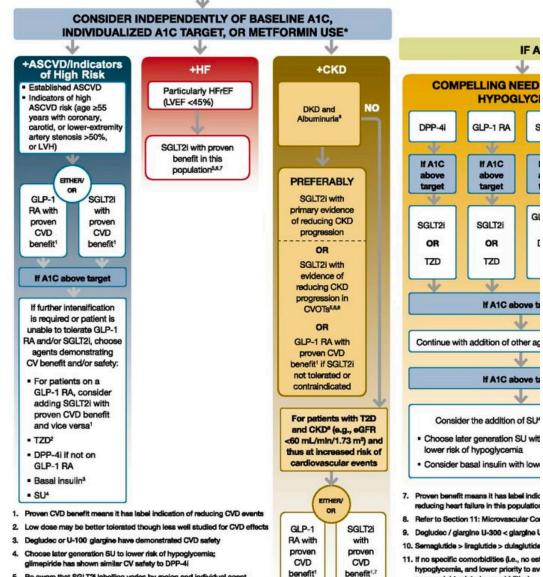
Research Funding


- Dexcom
- vTv Therapeutics
- Devices from Abbott Diabetes Care

Stock Options

- Omada Health
- Teladoc/Livongo

Management of Diabetes Has Changed


- New, non-glycemic paradigm for treating people with T2DM and CVD/HF/CKD
- CGM technology changes us from an A1C focus to a TIR focus
- T1DM management has been revolutionized by technology

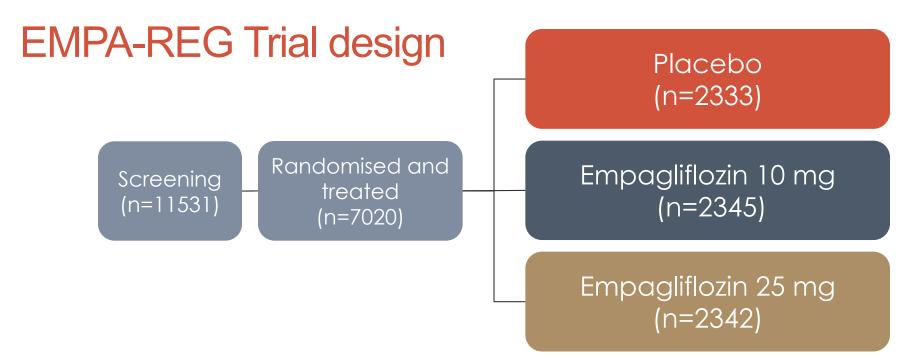
Standards of Medical Care in Diabetes - 2021. Diabetes Care 2021;44(Suppl. 1):S111-S124

INDICATORS OF HIGH-RISK OR ESTABLISHED ASCVD, CKD, OR HF

NO

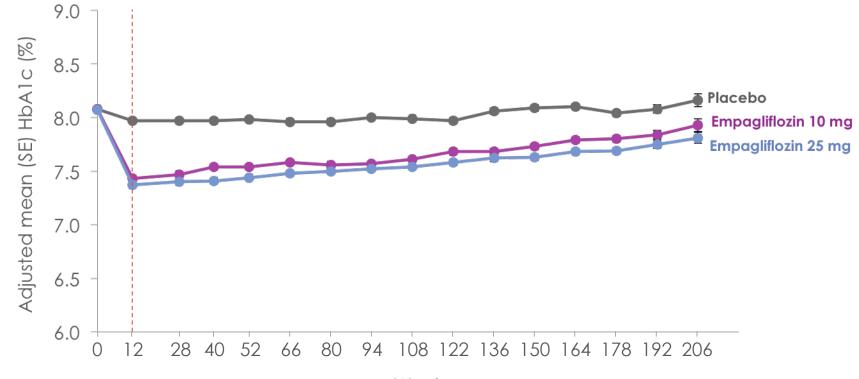
Be aware that SGLT2i labelling varies by region and individual agent with regard to indicated level of eGFR for initiation and continued use

Diabetes Care 2021;44(Suppl. 1):S1–S12 | https://doi.org/10.2337/dc21-S006


or no weight-related comorbidities)

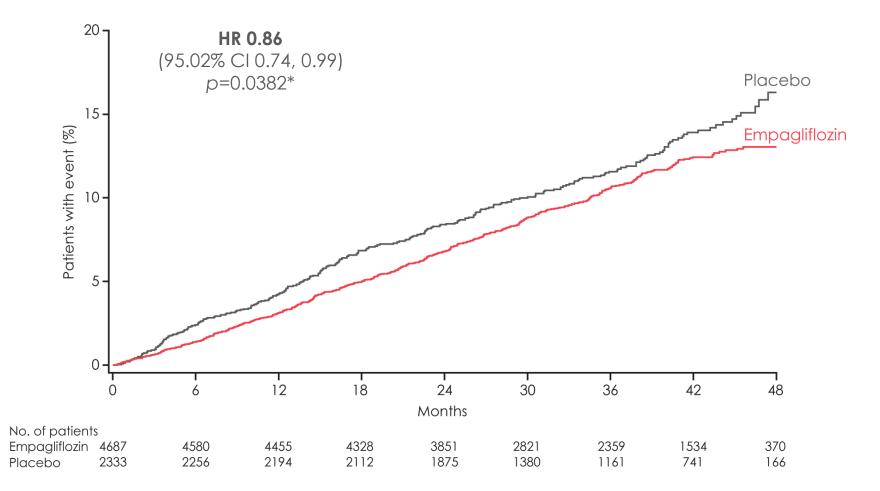
12. Consider country- and region-specific

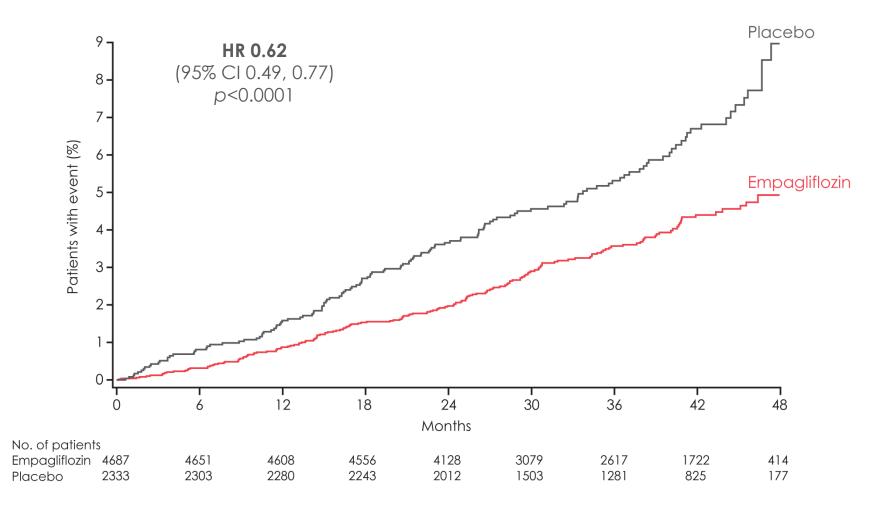
CV Outcomes Trials in Diabetes: SGLT-2 I


Study	EMPA-REG	CANVAS Program	DECLARE- TIMI	VERTIS-CV
SGLT-2 I	empagliflozin	canagliflozin	dapagliflozin	ertugliflozin
Ν	7028	10,142	17,276	2846
Reported	2015	2017	2018	2020
CVOT Outcome	Benefit	Benefit	Benefit	Noninferior
Renal and HF Outcome	Benefit	Benefit	Benefit	Benefit

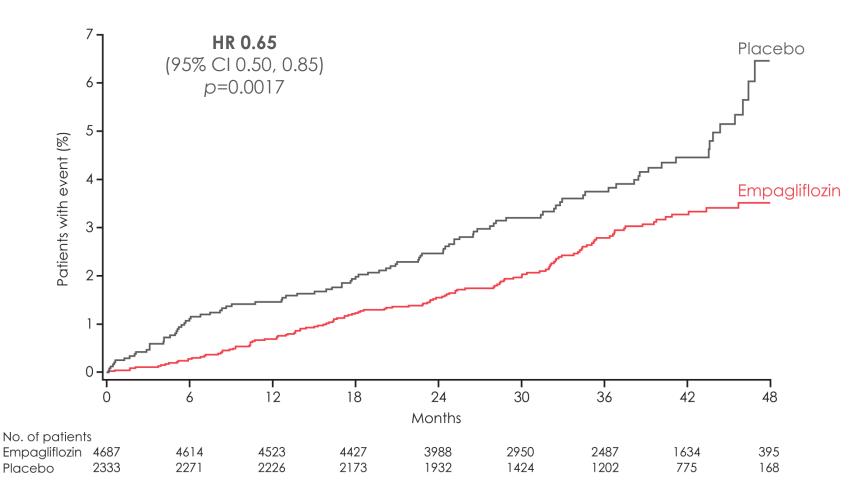
N Engl J Med 2015; 373:2117-2128, N Engl J Med 2017; 377:644-657,

- Study medication was given in addition to standard of care
 - Glucose-lowering therapy was to remain unchanged for first 12 weeks
- Treatment assignment double masked
- The trial was to continue until at least 691 patients experienced an adjudicated primary outcome event

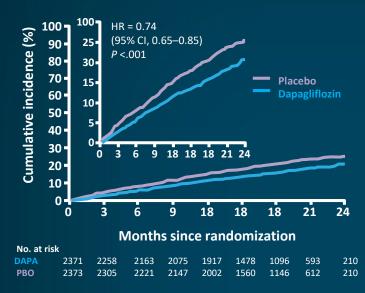

HbA1c


Week

Placebo 2294 2272 2188 2133 2113 2063 2008 1967 1741 1456 1241 1109 962 705 420 151 749 Empagliflozin 10 mg 2296 2272 2218 2150 2155 2108 2072 2058 1805 1520 1297 1164 1006 488 170 Empagliflozin 25 mg 2296 2280 2212 2152 2150 2115 2080 2044 1842 1540 1327 1190 1043 795 498 195


Primary outcome: 3-point MACE

CV death


Hospitalisation for heart failure

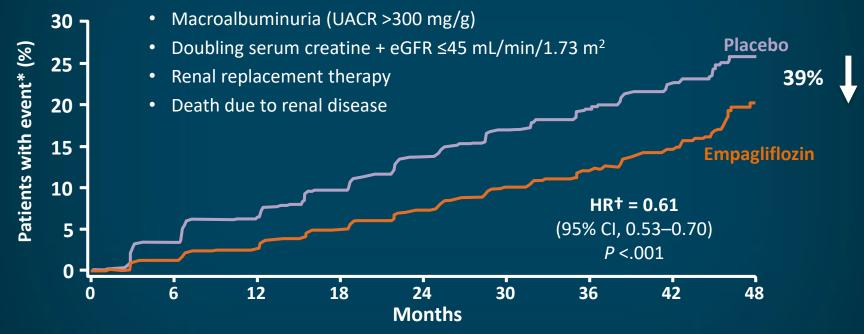
Cumulative incidence function. HR, hazard ratio

DAPA HF Primary Outcomes: DM vs Non-DM Subgroups

Primary outcome

DAPA = dapagliflozin; AFib = atrial fibrillation; ECG = electrocardiogram; IV = intravenous.

McMurray JJV, et al. N Engl J Med. 2019;381:1995-2008.


Primary outcome was composite of worsening HF (hospitalization for HF or urgent visit resulting in IV treatment for HF) or CV death, which occurred in a significantly lower (P <.001) percentage of patients in dapagliflozin group (16.3%) vs placebo (21.2%).

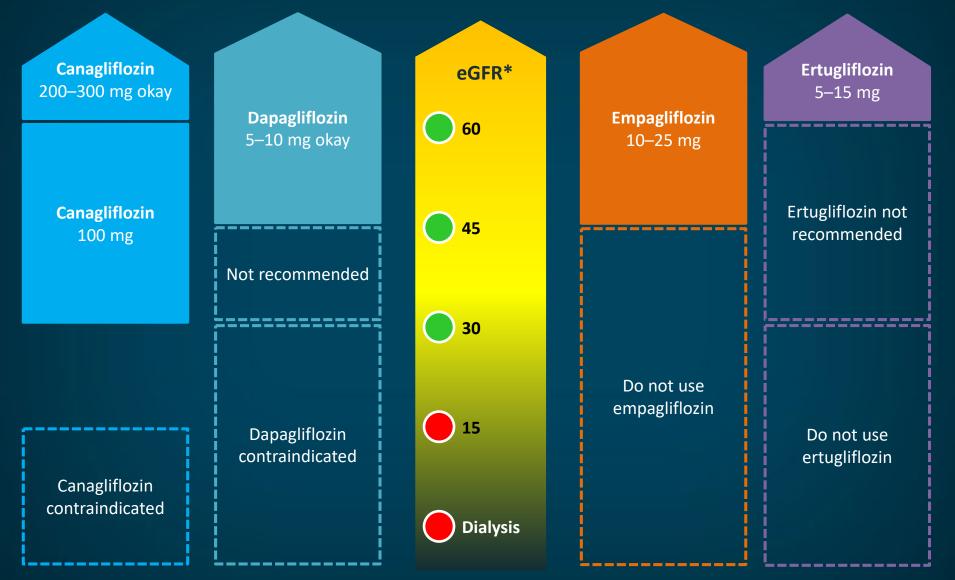
Primary outcome subgroup analysis

Subgroup	DAPA n = 2373 Patients/	PBO n = 2371 (total, no.	Hazard Ratio (95% Cl)	
Hospitalization for heart failure Yes No	195/1124 191/1249	279/1127 223/1244		0.67 (0.56–0.80) 0.84 (0.69–1.01)
Type 2 diabetes at baseline Yes No	215/1075 171/1298	271/1064 231/1307		0.75 (0.63–0.90) 0.73 (0.60–0.88)
Afib or flutter on enrollment ECG Yes No	109/569	126/559 376/1812		0.82 (0.63–1.06) 0.72 (0.61–0.84)
Main cause of heart failure Ischemic Non-ischemic or unknown	223/1316 163/1057	289/1358 213/1013	0.5 0.8 1.0 1.2	0.77 (0.65–0.92) 0.71 (0.58–0.87)
Body-mass index <30 ≥30	259/1537 127/834	320/1533 182/838	Favors dapagliflozin Favors p	acebo 0.78 (0.66–0.92) 0.69 (0.55–0.86)
Baseline eGFR (ml/min/1.73m²) <60 ≥60	191/962 195/1410	254/964 248/1406		0.72 (0.59–0.86) 0.76 (0.63–0.92)

EMPA-REG OUTCOME: Secondary Outcome Cumulative Incidence of Incident or Worsening Nephropathy

Incident or worsening nephropathy includes:

*Kaplan-Meier estimate; †Hazard ratio based on Cox regression analyses.


Wanner C, et al. N Engl J Med. 2016;375:323-334.

Meta-analysis of Effects of SGLT2 Inhibitors on Major Kidney Outcomes

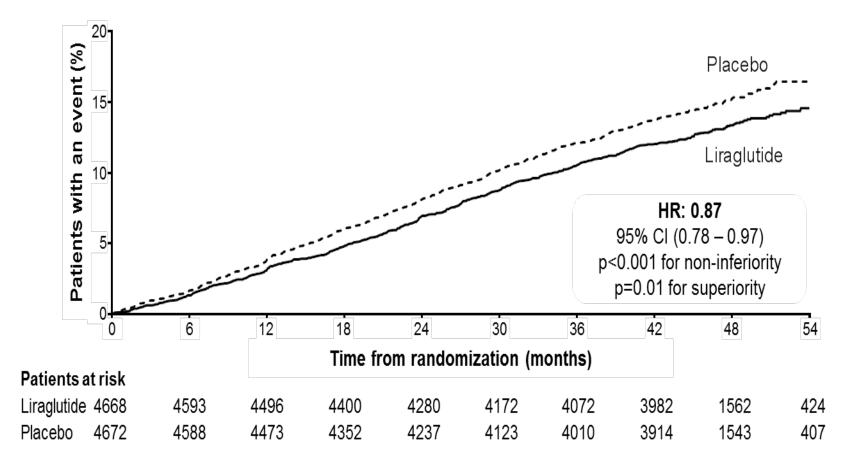
Major kidney outcomes	Events	Patients		RR (S	95% CI)
Dialysis, transplantation, or death due to kidney disease	252	38,723		0.67 (0	.52–0.86)
ESKD	335	38,723		0.65 (0	.53–0.81)
Substantial loss of kidney function, ESKD, or death due to kidney disease	967	38,671		0.58 (0	.51–0.66)
Substantial loss of kidney function, ESKD, or death due to CV or kidney disease	2323	38,676		0.71 (0	.63–0.82)
Acute kidney injury	943	38,684		0.75 (0	.66–0.85)
			0.5	0 2.5	
		Favo	ors SGLT2 inhibitor	Favors placebo	

RR = relative risk. Neuen BL, et al. Lancet Diabetes Endocrinol. 2019;7:845-854.

Current Renal Restrictions: SGLT2 Inhibitors

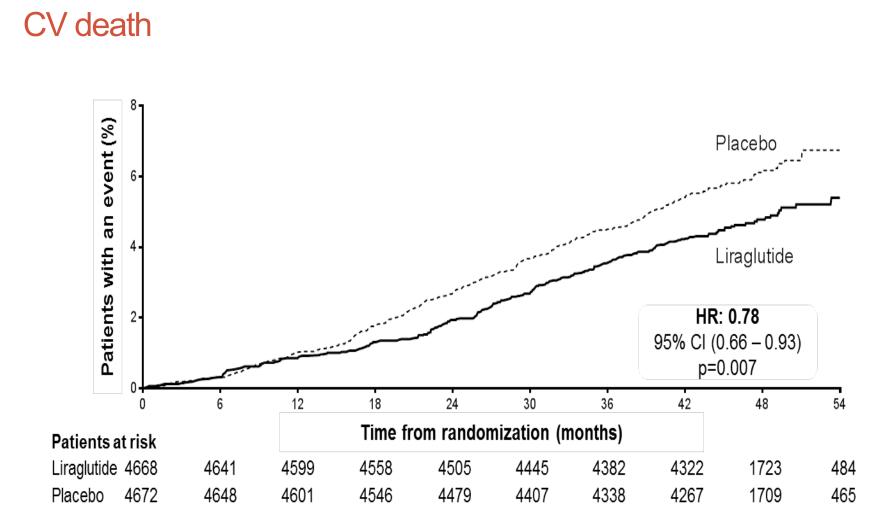
*eGFR in mL/min/1.73m².

Prescribing information for canagliflozin, dapagliflozin, empagliflozin, and ertugliflozin.


CV Outcomes Trials in Diabetes: GLP1-RA

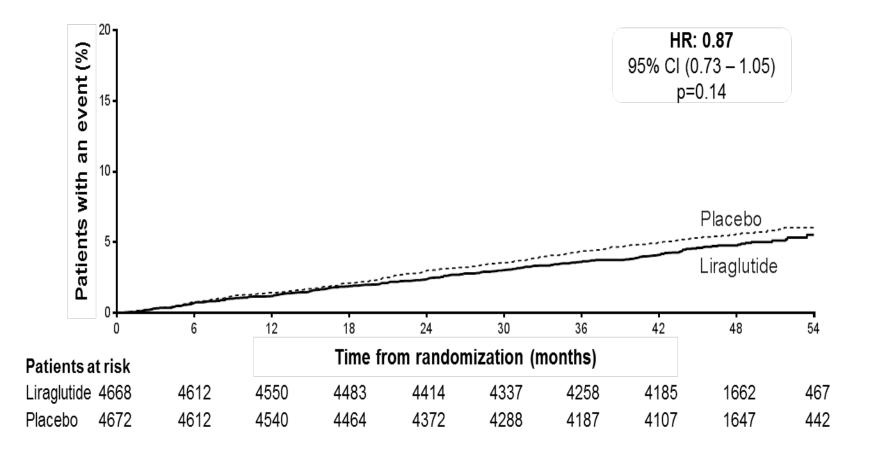
Study	ELIXA	FREEDOM -CVO	LEADER	SUSTAIN 6	EXSCEL	REWIND
GLP1-RA	Lixi- senatide	ITCA-650 exenatide	liraglutide	semaglutide	Exenatide LR	dulaglutide
Ν	6,068	~4,000	9,340	3,297	14,752	9,901
Reported	2015	2016	2016	2016	2017	(2018)
CVOT Outcome	Neutral	Neutral	Benefit In label	Benefit	Neutral	Benefit
Other			Renal benefit	Worsening retinopathy		31% CVD; A1C = 7.3%

N Engl J Med 2016; 375:1834-1844, N Engl J Med 2016;375:311-322, Diab Obes Metab 2018;20:42-49, N Engl J Med 2017;377:1228-1239, NEJM 2015;373:2247-2257


Primary outcome

CV death, non-fatal myocardial infarction, or non-fatal stroke

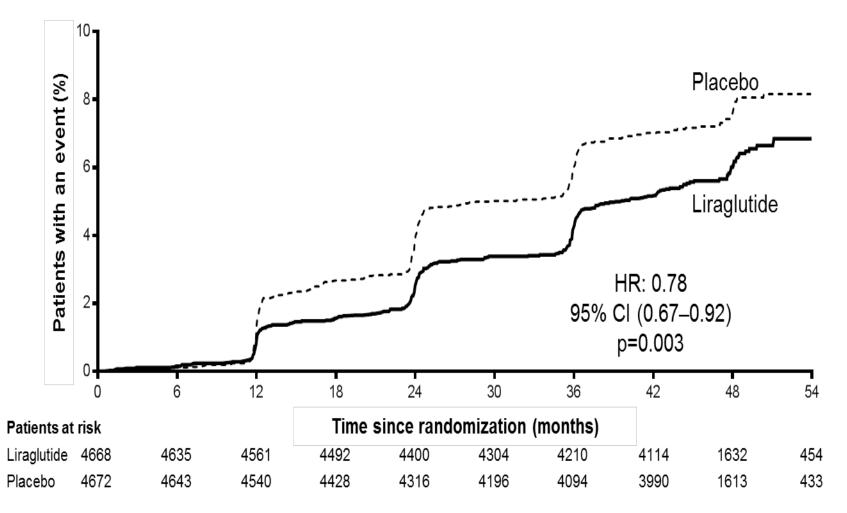
The primary composite outcome in the time-to-event analysis was the first occurrence of death from cardiovascular causes, non-fatal myocardial infarction, or non-fatal stroke. The cumulative incidences were estimated with the use of the Kaplan–Meier method, and the hazard ratios with the use of the Cox proportional-hazard regression model. The data analyses are truncated at 54 months, because less than 10% of the patients had an observation time beyond 54 months. CI: confidence interval; CV: cardiovascular; HR: hazard ratio.


Presented at the American Diabetes Association 76th Scientific Sessions, Session 3-CT-SY24. June 13 2016, New Orleans, LA, USA.

The cumulative incidences were estimated with the use of the Kaplan–Meier method, and the hazard ratios with the use of the Cox proportional-hazard regression model. The data analyses are truncated at 54 months, because less than 10% of the patients had an observation time beyond 54 months. Cl: confidence interval; CV: cardiovascular; HR: hazard ratio.

Presented at the American Diabetes Association 76th Scientific Sessions, Session 3-CT-SY24. June 13 2016, New Orleans, LA, USA.

Hospitalization for heart failure

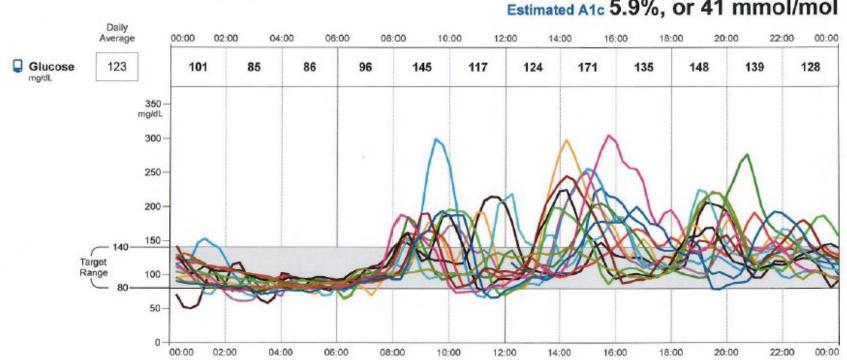


The cumulative incidences were estimated with the use of the Kaplan–Meier method, and the hazard ratios with the use of the Cox proportionalhazard regression model. The data analyses are truncated at 54 months, because less than 10% of the patients had an observation time beyond 54 months. CI: confidence interval; HR: hazard ratio.

Presented at the American Diabetes Association 76th Scientific Sessions, Session 3-CT-SY24. June 13 2016, New Orleans, LA, USA.

Time to first renal event

Macroalbuminuria, doubling of serum creatinine, ESRD, renal death


The cumulative incidences were estimated with the use of the Kaplan–Meier method, and the hazard ratios with the use of the Cox proportionalhazard regression model. The data analyses are truncated at 54 months, because less than 10% of the patients had an observation time beyond 54 months. CI: confidence interval; ESRD: end-stage renal disease; HR: hazard ratio.

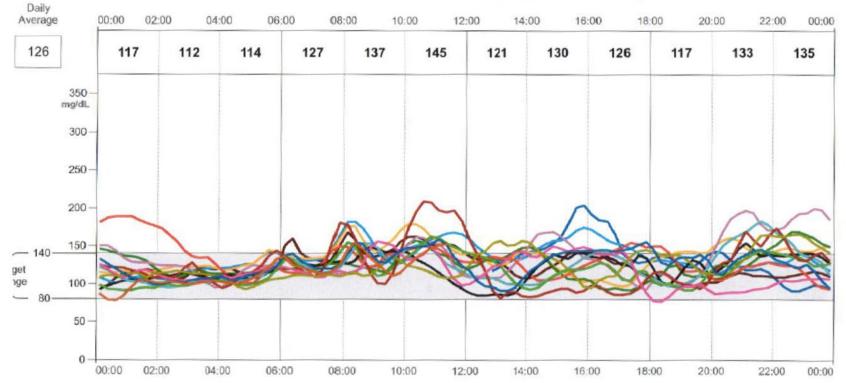
Presented at the American Diabetes Association 76th Scientific Sessions, Session 3-CT-SY24. June 13 2016, New Orleans, LA, USA.

Case

- JR is a 60 yo male with a 6 year history of type 2 diabetes
- He has always been well controlled on metformin 1 gm BID with an A1C of 5.8 – 6.5%
- 10 years ago he had an MI from which he fully recovered
- He runs walks 5 miles daily for exercise; he eats fairly well but consumes rice/bread with most meals.
- He is on a statin, an ARB and an aspirin.
- His BP = 128/78, BMI = 23.4 kg/m², LDL = 65, eGFR = 70
- His most recent A1C is 6.1% and his blinded CGM tracing is as follows.

Type 2 Diabetes with CVD on Metformin

Estimated A1c 5.9%, or 41 mmol/mol


Image courtesy of Anne Peters, MD.

Daily Patterns(with glucose readings) 27 March 2018 - 10 April 2018 (15 days)

Follow-up

- Reduced metformin by 50%
- After discussion with patient started dulaglutide 0.75 mg weekly. Developed nausea/vomiting/abdominal pain.
- Switched to a low dose of a semaglutide and uptitrated to 0.5 mg weekly
- He changed his diet
- Over time he lost 12 pounds and his A1C fell to 5.1%
- His metformin was stopped.

Follow-Up Blinded CGM

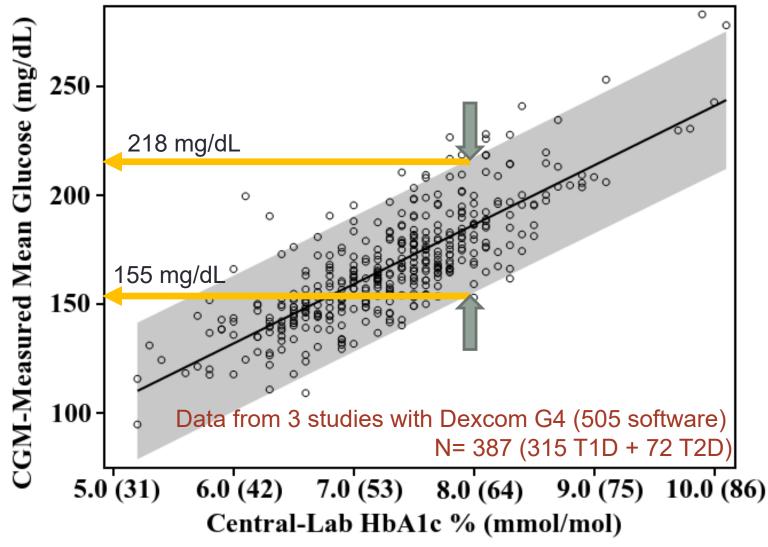
Estimated A1c 6.0%, or 42 mmol/mol

Image courtesy of Anne Peters, MD.

Conclusions/Considerations for Therapy

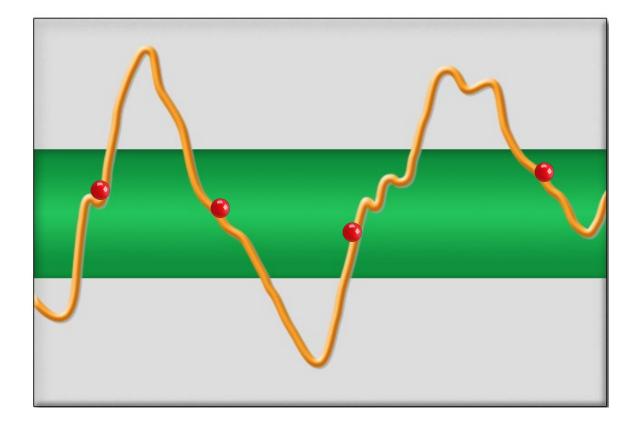
- Target additional CVD risk reduction
- Give options for therapy
- Discuss nutrition
- Watch for too much weight loss
- However, what would you do under these circumstances? Is A1C irrelevant?
 - A1C = 6.1% on a sulfonylurea agent
 - A1C = 6.1% on insulin
 - A1C = 10% with symptoms of uncontrolled diabetes

Is A1c Enough To Help Us Manage Patients?

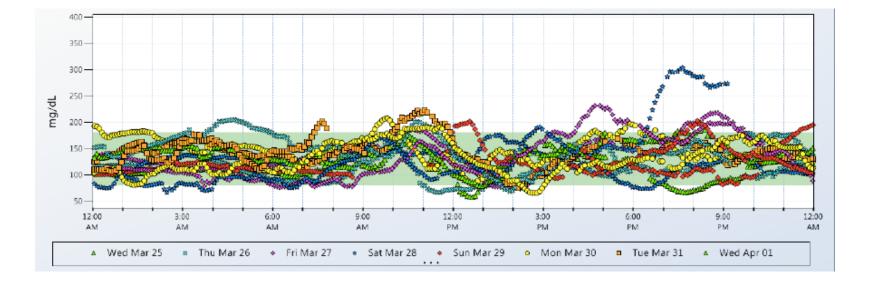

Strengths of A1c

- Reflects blood glucose concentrations over ~3 months
- Only metric of glycemic control that has been prospectively associated with chronic complications
- Useful for assessing trends in a population over time

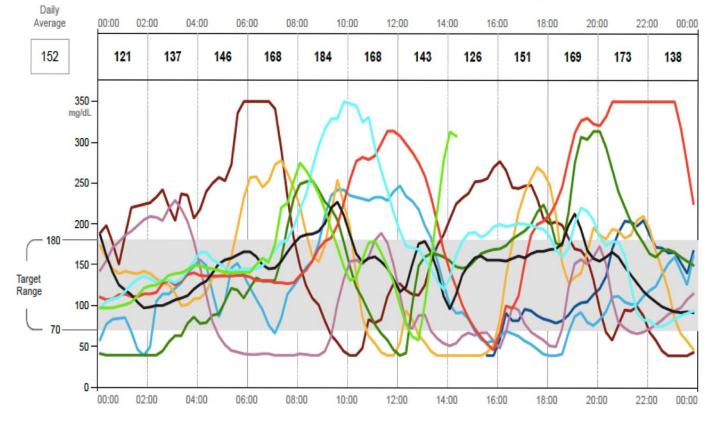
Limitations of A1c


- Affected by other conditions that affect red blood cell lifespan or interfere with glucose binding to hemoglobin
- A wide range of mean glucose concentrations exist for a given HbA1c level
- Provides no information about hypoglycemia frequency or severity
- May under-represent the burden of hyperglycemia in African-Americans

CGM-measured Mean Glucose Versus Lab-Measured HbA1c



Slide thanks to Roy Beck (Beck RW, et al. Diabetes Care. 2017;40:994-999.)


The Value of Continuous Glucose Monitoring

T1DM: A1C = 6.8%, low variability

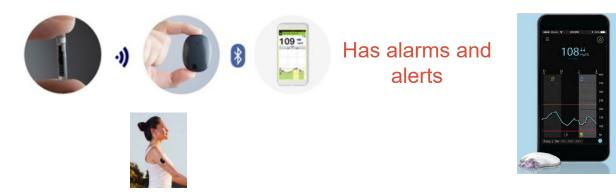
T1DM: A1C = 6.9%, high variability

Estimated A1c 6.9%, or 52 mmol/mol

Contrasting CGM and BGM

Factor	BGM	CGM
Hyperglycemia		
Hypoglycemia		
Glycemic trends (real time)		
Alarms and alerts (real time)		
24/7 Patterns of glycemia (retrospective)		
Time needed for meaningful data	Varies	10-14 days
Frequency of skin poking	4-6 times daily	Every 10 – 14 days

Current CGM Sensors


No Fingersticks Required

Requires swiping every 8 hours

Need Fingerstick Calibration

Implanted

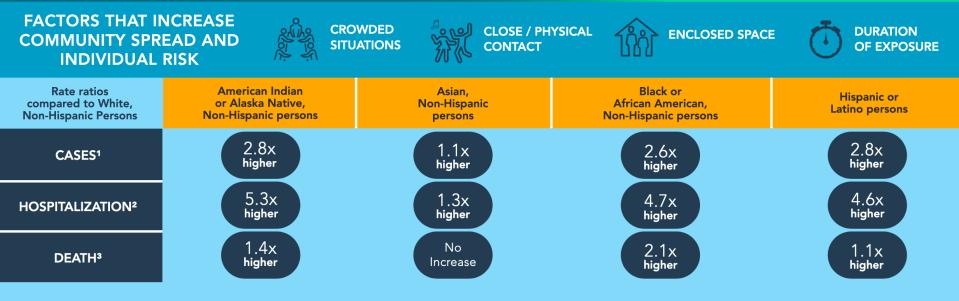
Why Not Fingersticks?

Websites for Data Transfer

CONNECT TO YOUR DOCTOR'S OFFICE WITH:

AND UPLOAD GLUCOSE DATA TO:

"Professional" (blinded) Systems Exist

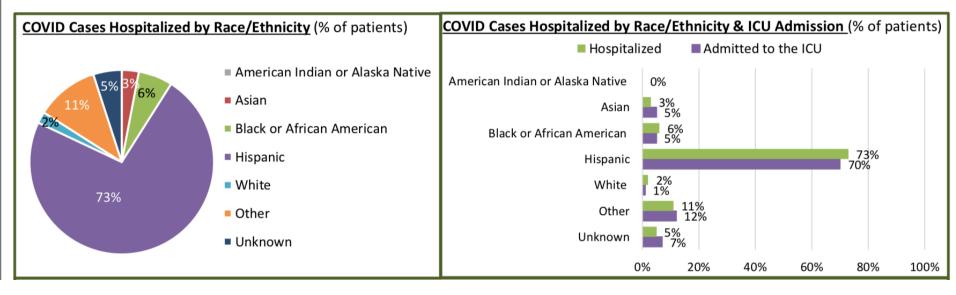

MOST FREQUENTLY REPORTED UNDERLYING CONDITIONS

MMWR June 19, 2020. 69:759-765

CDC Impact of Ethnicity

COVID-19 CASES, HOSPITALIZATION, AND DEATH BY RACE/ETHNICITY

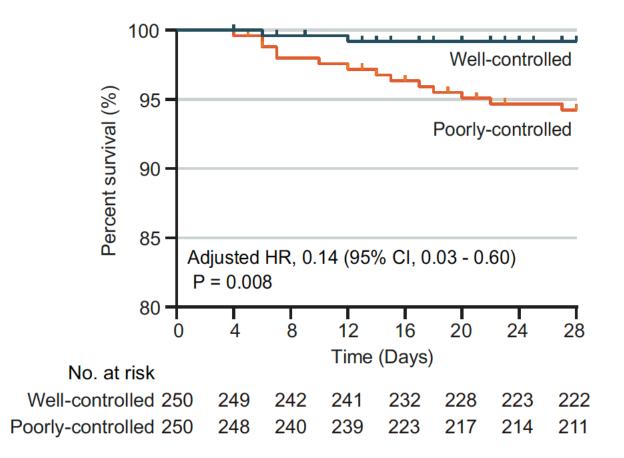
Race and ethnicity are risk markers for other underlying conditions that impact health — including socioeconomic status, access to health care, and increased exposure to the virus due to occupation (e.g., frontline, essential, and critical infrastructure workers).


https://www.cdc.gov/coronavirus/2019-ncov/downloads/covid-data/hospitalizationunderlying-medical-conditions.pdf Join "DHS_Guest"

COVID-19 Dashboard

10/13/20

DHS COVID Demographics by Race/Ethnicity¹

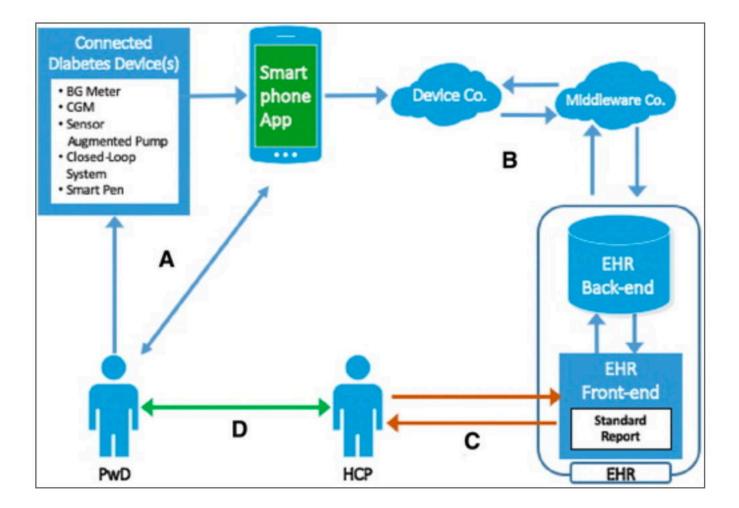

(March 1 – October 10, 2020)

A1C and Risk of Death in China

- Patients in Hubei Province
- 6,385 without T2DM. (A1C = 6.1%)
- 952 with T2DM (A1C = 7.9%)
- 282 well-controlled (A1C = 7.3%) (3.9 10); 528 poorly controlled (A1C = 8.1%) (3.9 >10).
- 250 well-controlled matched with 250 poorly controlled patients (1:1 propensity score-matched analysis)

Survival Curves

Cell Metabolism 31:1068-1077, 2020


COVID Deaths in the UK—T2DM

Type 2 diabetes	Hazard ratio (95% CI)	p value
Sex		
Male	1.61 (1.54–1.67)	<0.000
Female	1 (ref)	
Age, years		
<40	0.18 (0.12–0.27)	<0.000
40-49	0.25 (0.20–0.31)	<0.000
50-59	0.52 (0.47–0.58)	<0.000
60-69	1 (ref)	
70-79	1.94 (1.81–2.08)	<0.000
≥80	↔ 4·52 (4·23-4·84)	<0.000
Index of multiple deprivation quintile		
1 (most deprived)	1.46 (1.37–1.56)	<0.000
2	1.28 (1.20-1.37)	<0.000
3	1.08 (1.01–1.16)	0.029
4	1.01 (0.94–1.08)	0.78
5 (least deprived)	1 (ref)	
Ethnicity		
Asian	1.08 (1.01–1.15)	0.021
Black	1.63 (1.51–1.77)	<0.000
Mixed	1.30 (1.10–1.55)	0.002
Other*	1.01 (0.86–1.18)	0.91
White	1 (ref)	
HbA _{1c} , mmol/mol		
<48	1.11 (1.05-1.18)	0.000
48-53	1 (ref)	
54-58	1.05 (0.97–1.13)	0.23
59-74	1.22 (1.15-1.30)	<0.000
75-85	1.36 (1.24–1.50)	<0.000
≥86	1.61 (1.47-1.77)	<0.000
eGFR, mL/min per 1·73 m ²		
≥90	1 (ref)	
60-89	1.02 (0.96–1.08)	0.51
45-59	1.39 (1.30–1.49)	<0.000
30-44	1.76 (1.63–1.89)	<0.000
15-29	2.31 (2.10-2.54)	<0.000
<15	→ 4·91 (4·34–5·56)	<0.000
BMI, kg/m ²		
<20.0	2.33 (2.11–2.56)	<0.000
20.0-24.9	1.34 (1.27–1.42)	<0.000
25.0–29.9	1 (ref)	
30-0-34-9	1.04 (0.98–1.10)	0.23
35-0-39-9	1.17 (1.08–1.26)	<0.000
	1 60 (1 47 1 75)	-0.000

March 2020: A New Era in Medicine

Tele-Connection in Diabetes

Diabetes Tech Therapeutics On-line September 2020 doi: 10.1007/s00592-017-1084-9

CHECKLIST FOR SETTING UP A VIRTUAL CLINIC

online systems, or a combination of these methods.

b. Informing the GP of the action plan

c. Does the patient need to email anything to their health care professional in advance, for example – clinic letters or results.

FDA NEWS RELEASE

Coronavirus (COVID-19) Update: FDA allows expanded use of devices to monitor patients' vital signs remotely

f Share> Tweetin LinkedinSemail⇒ Print

For Immediate Release: March 20, 2020

Early Real-World Logistics of Inpatient CGM

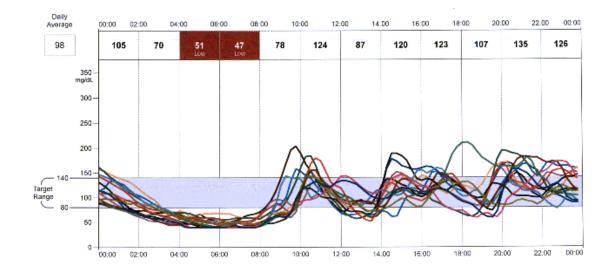
Placement of sensor

- Skilled endocrine NP
- Proning trend \rightarrow arm placement

Placement of receiver

- On door facing out, within 20 feet
- Re-used receiver (after cleaning)

Alerts (100 mg/dL to 250 mg/dL, drop/rise)

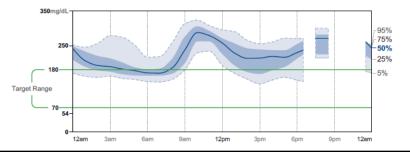


Slide courtesy of Dr. Shivani Agarwal

Outpatient Diabetes "ICU"

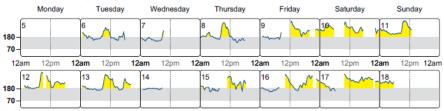
- New onset or out of control/sick patients
- Use CGM/InPen as much as possible
- Followed daily by my diabetes team
- Feedback provided/adjustments made via telemedicine/email
- Once stable patients go back to routine follow-up

Bedtime Glargine with an A1C = 6.7%



Pandemic—Related Increase in A1C

GLUCOSE STATISTICS AND TARG	ETS	TIME IN RANGES			
October 5, 2020 - October 18, 2020 % Time CGM is Active	14 Days 60%	ſ	Very High >250 mg/dL	22% (5h 17min)	
Ranges And Targets For	Type 1 or Type 2 Diabetes				
Glucose Ranges Target Range 70-180 mg/dL	Targets % of Readings (Time/Day) Greater than 70% (16h 48min)	250			
Below 70 mg/dL	Less than 4% (58min)		High 181 - 250 mg/dL	47% (11h 17m	
Below 54 mg/dL	Less than 1% (14min)				
Above 180 mg/dL	Less than 25% (6h)	100			
Above 250 mg/dL	Less than 5% (1h 12min)	180	Torget Bonge an un un	31% (7h 26mi	
Each 5% increase in time in range (70-180 mg/dL) is clinically beneficial.		Target Range 70 - 180 mg/dL	3176 (/h 26mi	
Average Glucose	214 mgldL	70	Low 54 - 69 mg/dL	0% (Omir	
Glucose Management Indicator (GN	ll) 8.4%	34 L	Very Low <54 mg/dL	0% (Omin)	
Glucose Variability Defined as percent coefficient of variation (%CV	21.2%); target ≤36%				


AMBULATORY GLUCOSE PROFILE (AGP)

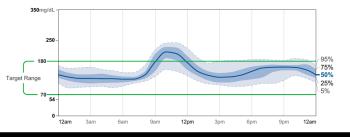
AGP is a summary of glucose values from the report period, with median (50%) and other percentiles shown as if occurring in a single day.

DAILY GLUCOSE PROFILES

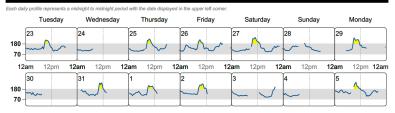
Each daily profile represents a midnight to midnight period with the date displayed in the upper left corner.

Source: Battelino, Tadej, et al. "Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range." Diabetes Care, American Diabetes Association, 7 June 2019, https://doi.org/10.2337/dci19-0028.

Changed His Lifestyle and Got Vaccinated!

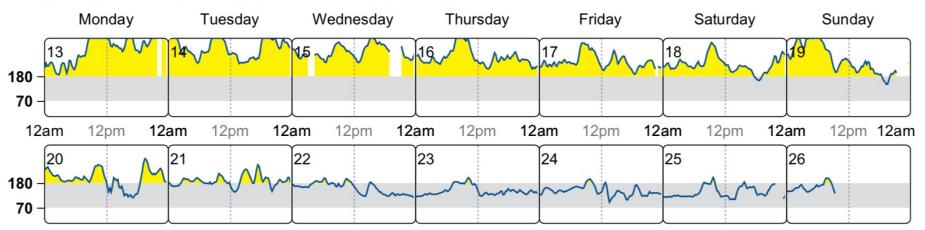

AGP Report

March 9, 2021 - April 5, 2021 (28 Days)


GLUCOSE STATISTICS AND TA	RGETS	TIME IN RAI	NGES	
March 9, 2021 - April 5, 2021 % Time CGM is Active	28 Days 64%		Very High >250 mg/dL	0% (0min)
Ranges And Targets For	Type 1 or Type 2 Diabetes	250	High 181 - 250 mg/dL	12% (2h 53mir
Glucose Ranges Target Range 70-180 mg/dL	Targets % of Readings (Time/Day) Greater than 70% (16h 48min)	180		
Below 70 mg/dL	Less than 4% (58min)			
Below 54 mg/dL	Less than 1% (14min)		-	00%
Above 180 mg/dL	Less than 25% (6h)		Target Range 70 - 180 mg/dL	88% (21h 7min
Above 250 mg/dL	Less than 5% (1h 12min)			
Each 5% increase in time in range (70-180 mg	/dL) is clinically beneficial.			
Average Glucose	140 mg/dL	70	Low 54 - 69 mg/dL	0% (0min
Glucose Management Indicator (GMI) 6.7%	54	Very Low <54 mg/dL	0% (0min)
Glucose Variability	23.8%			
Defined as percent coefficient of variation (%	%CV); target ≤36%			

AMBULATORY GLUCOSE PROFILE (AGP)

AGP is a summary of glucose values from the report period, with median (50%) and other percentiles shown as if occurring in a single day.


DAILY GLUCOSE PROFILES Most recent 14 days. See Weekly Summary report for more days.

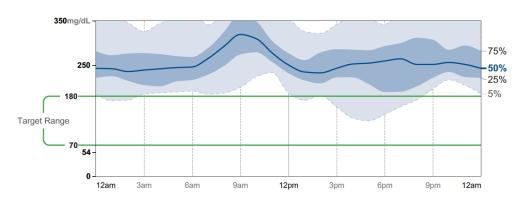
Source: Battellino, Tadej, et al. "Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range." Diabetes Care, American Diabetes Association, 7 June 2019, https://doi.org/10.2337/dci19-0028.

New Onset Diabetes with COVID-19

DAILY GLUCOSE PROFILES

Each daily profile represents a midnight to midnight period with the date displayed in the upper left corner.

First Two Weeks

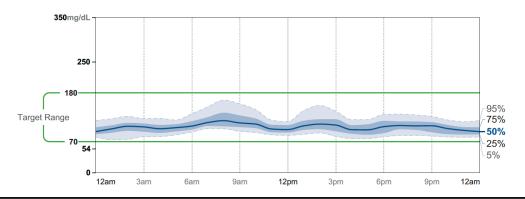

AGP Report

July 8, 2020 - July 21, 2020 (14 Days)

GLUCOSE STATISTICS AND TA	ARGETS	TIME IN R	ANGES	
July 8, 2020 - July 21, 2020 % Time CGM is Active	14 Days 60%		Very High >250 mg/dL	50% (12h)
Ranges And Targets For	Type 1 or Type 2 Diabetes			
Glucose Ranges Target Range 70-180 mg/dL	Targets % of Readings (Time/Day) Greater than 70% (16h 48min)			
Below 70 mg/dL	Less than 4% (58min)			
Below 54 mg/dL	Less than 1% (14min)	250		
Above 180 mg/dL	Less than 25% (6h)		High 181 - 250 mg/dL	44% (10h 34min)
Above 250 mg/dL	Less than 5% (1h 12min)		T	C 0/
Each 5% increase in time in range (70-180 m	g/dL) is clinically beneficial.	100	Target Range 70 - 180 mg/dL	6% (1h 26min)
Average Glucose	261 mg/dL	180 70 54	Low 54 - 69 mg/dL	0% (0min)
Glucose Management Indicator ((GMI) 9.6%		─ Very Low <54 mg/dL	0% (0min)
Glucose Variability Defined as percent coefficient of variation (%	23.6% %CV); target ≤36%			

AMBULATORY GLUCOSE PROFILE (AGP)

AGP is a summary of glucose values from the report period, with median (50%) and other percentiles shown as if occurring in a single day.


4 – 6 Weeks Later

AGP Report August 1, 2020 - August 14, 2020 (14 Days)

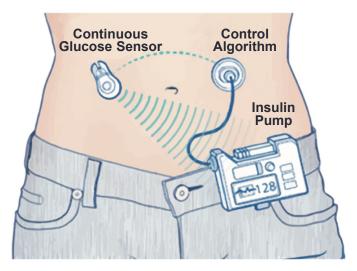
GLUCOSE STATISTICS AND TAR	GETS	TIME IN RANGES				
August 1, 2020 - August 14, 2020 % Time CGM is Active	14 Days 70%		Very High >250 mg/dL	0% (0min)		
Ranges And Targets For	Type 1 or Type 2 Diabetes	250 180	High 181 - 250 mg/dL	0% (0min)		
Glucose Ranges Target Range 70-180 mg/dL	Targets % of Readings (Time/Day) Greater than 70% (16h 48min)					
Below 70 mg/dL Less than 4% (58min)						
Below 54 mg/dL Less than 1% (14min)			Target Range 70 - 180 mg/dL	100% (24h)		
Above 180 mg/dL	Less than 25% (6h)					
Above 250 mg/dL	Less than 5% (1h 12min)					
Each 5% increase in time in range (70-180 mg/d	L) is clinically beneficial.					
Average Glucose	105 mg/dL	70	Low 54 - 69 mg/dL	0% (Omin)		
Glucose Management Indicator (Gl	MI) 5.8%	54	── Very Low <54 mg/dL	0% (0min)		
Glucose Variability Defined as percent coefficient of variation (%C	16.1% V); target ≤36%					

AMBULATORY GLUCOSE PROFILE (AGP)

AGP is a summary of glucose values from the report period, with median (50%) and other percentiles shown as if occurring in a single day.

Smart Pen with a Bolus Calculator

- Durable prescription pen with 1 year battery w ½ unit increments
- Compatible with Humalog[®], Novolog[®], Fiasp[®] 3-mL pen cartridges
- Bluetooth connection to smart phone app with customizable bolus calculator with 3 different modes
- Missed-dose reminders for meal and basal insulin
- Generates detailed reports, which can be integrated with CGM



FDA. Accessed March 23, 2021. https://www.accessdata.fda.gov/cdrh_docs/pdf20/K201337.pdf.

Carb Doses during/after Eating

Automated Insulin Delivery Systems: Combining Pumps and Sensors

73 yo patient with a h/o T1D since age 2


73 yo with T1DM since age 2

Target Range 70-180 r Below Target < 70 mg/o						
	dL				100%	1 times
					0%	0 times
Highest CGM Rea	ading Average co	BM Reading Lowes	st CGM Reading	Control-IQ [™] Tech	nology	
047	7 40	0		Average Reading		133 mg
	13	3 4	L()	Time in Use	99%	13 d 20 i
		•		Control-IQ Set to O	ff 0 %	0 n
				CGM Inactive ¹	1%	3 hrs. 0 n
				Pump Inactive ²	0%	32 n
Continuous Glucose M	Ionitoring Summary			Avg. Sleep & Exer	cise	
Above Target > 180 mg	/dl	4%	151 times	Daily Sleep		8 hrs. 1 n
Target Range 70-180				Weekly Exercise Ev	vents	0 tir
larger kange 10-100			3830 timos			
Below Target < 70		0%	3830 times 8 times			
	Summary					
Below Target < 70 Average Daily Insulin Basal	Summary				55%	12.76 u/day
Average Daily Insulin	Summary					12.76 u/day 3.15 u/day

ttps://tconnect.tandemdiabetes.com/Print%2FprintAllPtr.html?token=361634D5-F3D1-EA11-9B05-00155D7EE36C

Page 1 of 7

As Close to Perfection As I've Seen

Can We Really Manage Patients This Way?

Logbook Overview	Overnight 12:00 am - 6:00 am	Before Breakfast 6:00 am - 9:00 am	After Breakfast 9:00 am - 11:00 am	Before Lunch 11:00 am - 2:00 pm	After Lunch 2:00 pm - 5:00 pm	Before Dinner 5:00 pm - 7:00 pm	After Dinner 7:00 pm - 10:00 pm	Bedtime 10:00 pm - 12:00 am
Saturday Sep 28, 2019			172 10:24 am					
Friday Sep 27, 2019	191 5:42 am						252 9:51 pm	
Thursday Sep 26, 2019	135 5:47 am							195 10:30 pm
Wednesday Sep 25, 2019	135 5:37 am						308 9:36 pm	

THANK YOU